
1

MotionCor2 User Manual

Shawn Zheng
Unviersity of California San Francisco

Version: 1.4.0
Release Date: 08/18/2019

General

MotionCor2 is a multi-GPU program that corrects beam-induced sample motion recorded
on dose fractionated movie stacks. It implements a robust and efficient iterative alignment
algorithm that delivers precise measurement and correction of both global and local
motions at single pixel level, suitable for both single-particle and tomographic images.
MotionCor2 is sufficiently fast to keep up with automated data collection. The result is an
exceptionally robust strategy that can work on a wide range of data sets, including those
very close to focus or with very short integration times. Application significantly improves
Thon ring quality and 3D reconstruction resolution. MotionCor2 is a comprehensive
program that integrates gain correction, detection and correction of individual and cluster
of bad pixels, dose weighting, and supports both MRC, TIFF, and EER file formats.

 MotionCor2 is free for academic use and can be downloaded from
http://msg.ucsf.edu/software

Contacts:
Suggestions, discussions, and technical support:
Shawn Zheng: szheng@msg.ucsf.edu

Liscensing MotionCor2:
David Agard: agard@msg.ucsf.edu
Yifan Chen: YCheng@ucsf.edu

2

1. Installation and System requirement

MotionCor2 is a GPU accelerated program that runs on Linux platform equipped with one
or more advanced NVIDIA GPU cards. It is tested on many current nVidia GPU cards. The
current version was compiled on Centos 7. Three executables are provided for CUDA 9.2,
10.0, 10.1, and 10.2, respectively. CUFFT library is required.

MotionCor2 is a single-program package. Once unpacked, it is ready to go without any
further installation should correct libraries be installed properly. MotionCor2 can process
movies stacks saved in file formats including MRC, TIFF, and EER.

1.1 CPU memory
While MotionCor2 buffers as many as movie frames on GPU memory, most frames remain
on CPU memory because GPU memory is usually much smaller than CPU’s. We can use
the size of a gain corrected movie (4Byte/pixel) and assume they are all on CPU side to
safely estimate how much CPU memory is needed. For example, a 100-frame K3 super-
res movie occupies 36GB memory after gain correction. A MotionCor2 process needs to
allocate 1.25 x 36 = 45GB memory if it is running in single mode. When running in batch
processing mode, MotionCor2 loads a second movie (1B/pixel) before the first one finishs
its processing. Therefore, if users routinely collect 100-frame K3 super-res movies, the
system is recommended to have 45 + 9 + 100 = 154GB where the 100GB is reserved for
other processes.

2. Quick start

MotionCor2 is a command-line program configurable by means of command-line
parameters. The following is the minimum configuration to run the program.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \
-OutMrc /home/data/CorrectedSum.mrc

In this configuration MotionCor2 corrects only the global motion. It reads in the movie
stack “Stack_0001.mrc” and searches for the gain reference in the extended header of
Stack_0001.mrc. If found, the gain reference is loaded and applied to each frame. If not,
the program assumes the stack is already gain corrected. The global motion is then
measured and corrected by phase shift in Fourier space.

The minimum configuration for MotionCor2 to correct both global and local motion is as
follows.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \
-OutMrc /home/data/CorrectedSum.mrc \
-Patch 5 5

3

MotionCor2 first corrects the global motion for each frame and then divides the corrected
frames into 5x5 patches on which the local motion is measured. Once completed, the
measured shifts from each patch are fitted to a time-varying polynomial model that allows
the local motion to be smoothly corrected at single-pixel level across the whole frame and
throughout the movie stack. For K3 movie, it is recommended to use -Patch 7 5 instead.

2.1. Overlapping between adjacent patches
"-Patch" can have an optional third parameter to specify the overlapping between adjacent
patches. For example, "-Patch 5 5 20" means that each patch will have 20% overlapping
with its neighboring patches in each dimension.

3. Running on multiple GPUs

MotionCor2 can run on multiple GPUs by distributing computation onto each participating
GPU. The faster GPU will be assigned more computation than those slower ones. The
following example shows the configuration of using 4 GPUs.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \
-OutMrc /home/data/CorrectedSum.mrc \
-Patch 5 5 \
-Gpu 0 1 2 3

In this example the hosting node has 4 GPUs installed with unique IDs of 0 1 2 3. The GPU
IDs can be found by running a nVidia program nvidia-smi on command line. GPU 0 will
be used if -Gpu is not present in the command line.

It is very important to note that from version 1.0.1 each GPU can only be used in one
MotionCor2 process. If any GPU is shared in two or more MotionCor2 processes, motion
correction may fail! This is because the GPU memory allocated in MotionCor2 is not
managed and the allocation cannot exceed the physical memory each GPU has. It is
strongly recommended to use nvidia-smi to check before starting MotionCor2. The
following is an example of results reported by nvidia-smi.

4

Fig. 1 nvidia-smi shows that two GPUs, 0 and 1, are installed. Both of them are currently
used by a MotionCor2 process.

3.1. Using a subset of GPUs

In case multiple MotionCor2 processes are needed to run side by side, -Gpu and -UseGpus
can be used together to split all free GPUs to each process. -Gpu should be followed by the
IDs of all installed GPUs and -UseGpus specifies how many GPUs will be used in the
process. MotionCor2 maintains a text file MotionCor2_FreeGpus.txt in /tmp to track all
free GPUs that are not used by any MotionCor2 process.

For a system has four GPUs installed, for example, we can start two processes using -Gpu
0 1 2 3 -UseGpus 2. Each process choose 2 free GPUs to run. When all GPUs are in use,
the next process then cannot be started.

4. Apply gain reference

Gain reference can be saved either in the extended header of MRC files as collected in
UcsfImage or UcsfTomo packages or in a separate MRC file as in Leginon. The following
example shows how to specify the gain reference in the command line.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \
-OutMrc /home/data/CorrectedSum.mrc \
-Gain /home/data/MyGainRef.mrc \
-Patch 5 5

In this case MotionCor2 loads the gain reference from “MyGainRef.mrc”. If this file is not
found, the extended header of “Stack_0001.mrc” will be checked for gain reference. If gain
reference is not found, MotionCor2 proceeds without gain correction.

5

4.1. Rotate and glip gain reference
While the retrieved gain reference is always in accordance with the chip orientation, movie
stacks can be collected that are rotated and/or flipped. MotionCor2 allows users to
rotate/flip the gain reference to match the orientation of collected movie stacks using
command line options -RotGain and -FlipGain.
-RotGain: rotate gain reference counter clockwise. It takes four values from 0 to 3.
 0 − no rotation, default,
 1 − rotate 90°,
 2 − rotate 180°,
 3 − rotate 270°.

-FlipGain: flip the gain reference.
 0 − no flipping, default,
 1 − flip upside down (flip around horizontal axis),
 2 − flip left right (flip around vertical axis).

If both -RotGain and -FlipGain are enabled, the gain reference will be rotated first and
flipped next.

5. Dark reference subtraction

Dark reference can be loaded from a MRC file. If it is loaded successfully, dark reference
will be subtracted from each frame before gain reference is applied. The following
command line shows how to specify dark reference in the command line.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \
-OutMrc /home/data/CorrectedSum.mrc \
-Gain /home/data/MyGainRef.mrc \
-Dark /home/data/MyDarkRef.mrc \
-Patch 5 5

***** Here we assume dark and gain references bear the same orientation. This means that
-RotGain and -FlipGain settings are also applied to the dark reference if they are specified
in the command line. *****

6. Alignment configuration

Users can configure the number of iterations and the tolerance of alignment accuracy. The
corresponding parameters are highlighted in red color in the following example.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \
-OutMrc /home/data/CorrectedSum.mrc \
-Gain /home/data/MyGainRef.mrc \

6

-Dark /home/data/MyDarkRef.mrc \
-Patch 5 5 \
-Iter 10
-Tol 0.5

In this configuration the iterative alignment procedure terminates when either the
alignment error is less than 0.5 pixel or 10 iterations have reached. The default values are
7 for -Iter and 0.5 for -Tol.

7. Discard initial and trailing frames

The following example shows how to throw away 2 starting frames and 3 frames at the
end. The discarded frames are neither included in alignment nor in the corrected sum.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \
-OutMrc /home/data/CorrectedSum.mrc \
-Gain /home/data/MyGainRef.mrc \
-Dark /home/data/MyDarkRef.mrc \

-Patch 5 5 \
-Iter 10 \
-Tol 0.5 \
-Throw 2
-Trunc 3

If not specified, all frames are included.

8. Align to specified frames

By default a movie stack is aligned to its central frame. However, there are some occasions
when users want to align their stacks to a specified frame. This is can be done by specifying
the frame number after –FmRef. The frame number is zero-indexed based upon only the
loaded frames.

9. Dose weighting

MotionCor2 implemented the dose weighting scheme developed by Grant et al. [1]. The
following example shows how to enable dose weighting for a single-particle movie stack.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \
-OutMrc /home/data/CorrectedSum.mrc \
-Gain /home/data/MyGainRef.mrc \
-Patch 5 5 \

7

-Iter 10 \
-Tol 0.5 \
-Throw 2 \
-Kv 300 \
-PixSize 0.5 \
-FmDose 1.2 \

Users need to specify the high tension in kV, and pixel size of the input stack in angstrom,
and the frame dose in e/Å2. If any of the three parameters is missing, dose weighting step
is skipped. When dose weighting is enabled, both dose-weighted and unweighted sums are
generated. The weighted sum is saved in the file with its name appended with “_DW” as
CorrectedSum_DW.mrc in the aforementioned example.

9.1 Generate a dose weighted sum of selected frames

MotionCor2 automatically generates a third sum of selected frames that fall within a user-
specified dose range. The default setting "–SumRange 3.0 25.0" sums the frames that have
accumulated doses ranging from 3 to 35 e/A2. The MRC file storing this sum has a name
appended with "_DWS".

This option can be turned if the zeroes are specified.

9.2 Dose weighting for movies with variable frame exposures

In order to freeze stronger motions in early frames, movies can now be collected using
variable frame exposures of which the shorter ones are used for early frames. As a result,
the dose received by each frame is no longer a constant. In a joint effort to provide a support
to Thermal Fisher EER movies, MotionCor2 added a new option –FmIntFile that stands
for Frame Integration File, a 3-column text file, to promote this new data collection
strategy. The following is an example where a 100-frame movie collected with three
different frame exposures. The corresponding text file has three lines, one for each
exposure.

20 1 0.5
30 1 0.8
50 1 1.0

The first column lists the number of frames that have the same exposure. The second
column is for rendering the collected movie. A rendered frame is a simple sum of multiple
raw frames from the input movie file to MotionCor2. Therefore, the second column
specifies how many raw frames are summed in the rendered frames. The third column is
the dose a raw frame receives during its exposure. This file indicates that the early 20
frames are acquired at 0.5e/A2 per frame. Each of the second 30 frames, as is shown in the
second line, receives 0.8e/A2 while the last 50 frames get 1.0 e/A2 each. The rendered
frames are the same as the raw frames.

8

Note that –kV and –PixSize are still needed for dose weighting but –FmDose is ignored
when –FmIntFile is present.

9.3 Dose weighting for tomographic tilt series

When a dose-fractionated tomographic tilt series is provided as a series of MRC or TIFF
files, one for each tilt movie, dose weighted motion correction should include –InitDose to
ensure proper weighting of each movie. If we ignore the dose used for auxiliary operations,
–InitDose for the Nth movie acquired should be followed by the sum of all the doses
received by the previous N-1 movies.

10. Correct anisotropic magnification

Anisotropic magnification causes images less magnified in one direction (major axis) and
more magnified in the direction (minor axis) perpendicular to major axis. MotionCor2
corrects anisotropic magnification by stretching the image along the major axis. Users need
to obtain the parameters of anisotropic magnification using Tim Grant’s program
mag_distortion_estimate[2]. These parameters can then be provided to MotionCor2 using
“-Mag” that is followed by major scale, minor scale, and the angle of the major scale. In
the following example MotionCor2 corrects the anisotropic magnification that has major
scale of 1.003, minor scale of 0.998, and 34.0° of distortion angle reported by
mag_distortion_estimate.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \
-OutMrc /home/data/CorrectedSum.mrc \
-Gain /home/data/MyGainRef.mrc \
-Patch 5 5 \
-Iter 10 \
-Tol 0.5 \
-Throw 2 \
-Kv 300 \
-PixSize 0.5 \
-FmDose 1.2 \
-Mag 1.003 0.998 34.0

Note: In the previous versions of MotionCor2, “-Mag” should be followed by
magnifications rather than scales. Therefore, users need to invert the scales to
magnifications.

11. Image binning - Fourier cropping

Image binning is implemented by cropping in Fourier domain. -FtBin can be used to bin
the motion-corrected image to a specified resolution. Values for this option can be either

9

an integer or a float that is bigger than 1. In the following case, the output image is cropped
in Fourier space by 1.5x.

MotionCor2 -InMrc /home/data/Stack_0001.mrc \
-OutMrc /home/data/CorrectedSum.mrc \
-Gain /home/data/MyGainRef.mrc \
-Patch 5 5 \
-Iter 10 \
-Tol 0.5 \
-Throw 2 \
-FtBin 1.5

If the raw movie stacks are collected in super-resolution mode and the final images is
intended to be binned, we recommend to use the super-resolution stacks as input and let
MotionCor2 do the binning. This is a better practice than passing binned stack to
MotionCor2. Since the local motion is corrected by linear interpolation that has low-pass
effect in Fourier space, it is preferred to correct the local motion at super-resolution pixel
to minimize the loss of high-frequency information due to interpolation.

12. Batch processing

Batch processing overlaps the disk operation with the intensive computation involved in
motion correction such that the disk I/O time is almost completely shadowed by the
computational time. MotionCor2 automates the sequential motion correction of multiple
single-particle movie stacks based upon pattern recognition of file names. “-Serial 1”
enables the batch processing. There are two scenarios. First, when the folder contains only
the movie stacks, the following examples shows the how to configure the command line.

MotionCor2 -InMrc /home/data/ \
-OutMrc /home/Sum/Corrected \
-Gain /home/Ref/MyGainRef.mrc \
-Patch 5 5 \
-Iter 10 \
-Tol 0.5 \
-Throw 2 \
-Kv 300 \
-PixSize 0.5 \
-FmDose 1.2 \
-FtBin 2 \
-Gpu 0 1 \
-Serial 1

In this case all the MRC files in “/home/data/” are treated as movie stacks and corrected
sequentially. The corrected sums are named by prefixing “Corrected” to the input file
names and saved in “/home/Sum/” directory.

10

Second, if the input folder contains mixed files, the following example shows how to
configure the command line for the program to choose only the MRC stack files.

MotionCor2 -InMrc /home/data/Stack_ \
-InSuffix Raw.mrc \
-OutMrc /home/Sum/Corrected \
-Gain /home/Ref/MyGainRef.mrc \
-Patch 5 5 \
-Iter 10 \
-Tol 0.5 \
-Throw 2 \
-Kv 300 \
-PixSize 0.5 \
-FmDose 1.2 \
-FtBin 2 \
-Gpu 0 1 \
-Serial 1

MotionCor2 chooses only the files with names prefixed with “Stack_” and suffixed with
“Raw.mrc” in “/home/data” directory. Here are two examples, “Stack_1234Raw.mrc” and
“Stack_3456-Raw.mrc”.

13. Support for TIFF files

-InTiff is used specify an input of TIFF file. Currently, there is no support for batch
processing of TIFF files. The support of TIFF files is limited to single-particle movie
stacks.

MotionCor2 -InTiff /home/data/Stack_0001.tif \
-OutMrc /home/Sum/Corrected_0001.mrc \
-Gain /home/Ref/MyGainRef.mrc \
-Patch 5 5 \
-Iter 10 \
-Tol 0.5 \
-Throw 2 \
-Kv 300 \
-PixlSize 0.5 \
-FmDose 1.2 \
-Gpu 0 1

13.1. Batch processing of TIFF stacks
MotionCor2 now supports batch processing of TIFF stacks in the same fashion as it does
for MRC stacks except that “-InTiff” should be used instead and “-InSuffix” should be
followed with the corrrect file extension of TIFF stacks.

11

14. Support for EER files

Version 1.4.0 starts to support EER movies using –InEer followed by the file name of an
EER movie. Currently, batch processing of EER movies is NOT yet supported. The motion
correction requires user input regarding EER encoding and how a EER movie is rendered.
EER encoding can be entered using –EerSampling followed by 1, 2 or 3 corresponding to
1x, 2x, and 4x upsampling, respectively. Rendering a EER movie is done by –FmIntFile
followed by a 3-column text file described in section 9.2. The following is the content of
an exemplary file for rendering a EER movie containing 567 EER encoded frames. As
mentioned in section 9.2, a rendered frame is a sum of multiple ERR frames.

120 3 0.1
447 7 0.1

In this example the 567 EER frames are contracted into 103 rendered frames of which the
first 40 frames are the result of summing every 3 EER frames and the remaining are
generated by summing every 7 EER frames. The last column is the dose in e/A2 each EER
frame receives. Note that the motion correction is done on the rendered frames.

15. Movies acquired at high frame rates

High frame rate (HFR) data collection is intended to reduce frame blurring, in particular,
for early frames because they are least radiation damaged and the early motion is strong.
The resulting challenges are reduced SNRs and increased number of frames. While the first
challenge makes the measurements of sample motion less reliable, the latter causes longer
processing time and demands more on computing resources. With –FmIntFile introduced,
HFR movies can be rendered as if they were collected with variable frame exposures. The
following is the content of the frame integration file used to contract a HFR movie of 443
frames acquired using 13.5ms frame exposure to 168 rendered frames. Please refer to
section 9.2 and 14 for more details.

 43 1 0.155
100 2 0.155
300 4 0.155.

16. Output motion corrected stack

Motion corrected stacks can be generated by specifying “-OutStack 1” along with the
motion corrected sum. Note that in this setup the dose weighting step is skipped. As such,
the corrected sum and stack are not dose weighted. The output stack is stored in a MRC
file with “_Stk” appended to the end of the output file name. This option is not available
for dose fractionated tomographic tilt series.

12

17. Low-signal movie stacks

There are two parameters users can play with. The first is B-factor default to 100. Its value
can be changed by -Bft. Since version 1.1.0, -Bft takes two parameters of which the first
one is used in global-motion measurement and the second is for local-motion. The default
values are "-Bft 500 150".

Another approach is to adjust the setting of -Group with its value default to 1. For stacks
with low signal to noise ratio, using a higher value has been found very effective. -Group
instructs the program to equally divide the input stack into sub-groups. Instead of aligning
individual frames, the sums these sub-groups are aligned. The shifts of individual frames
are then interpolated and extrapolated. For example, -Group 3 divides the input stack into
consecutive (non-overlapping) sub-groups, each containing 3 frames. As opposed to
increasing B-factor, this is a recommended approach.

18. Correction of defects on camera

In addition to dynamically detect and correct defects in acquired movie stacks, users can
specify fixed regions of defects in a text file. This file is composed of multiple lines of
which each contains four space-separated integers, x, y, w, and h that define a rectangular
region of defects. x and y are the pixel coordinates of the lower left corner of such a region
where w and h denote the width and height, respectively. The full path of this text file
should follow the tag “-DefectFile”. The defective pixels will be replaced with random
picks of good pixels in their neighborhood.

19. Archive raw movie stacks

This function allows to archive movie stacks in MRC files with each pixel saved in 4 bits.
This function can only be enabled when (1) the input movie stack is given in MRC file, (2)
the MRC file has 8 bits per pixel corresponding to MRC mode of 0 or 5, and (3) the full
path of the archive file is provided behind “-ArcDir”.

If the gain reference is provided as a MRC file in the command line, the gain reference will
be saved at the end of the extended-header area in the archive file.

20. Taking into account of frame motion blurring

Since version 1.1.0, there is a newly introduced option "-InFmMotion 1" that takes into
account of motion-induced blurring of each frame. The test on T20S proteasome data set
shows, although not significant, noticeable resolution improvement of reconstruction. By
default, this option is off.

13

21. Generate even and odd sums

Users can use “-SplitSum 1” to generate even and odd sums that are the partial sums of
even and odd frames, respectively. The corresponding MRC files are appended with
“EVN” and “ODD”, respectively.

22. On-the-fly motion correction

Since version 1.3.2, MotionCor2 has added a function to facilitate the on-the-fly motion
correction. This function allows a new process to be started without being tied to specific
GPU(s). As long as there are free GPUs at the moment of start, which are not in use by any
other MotionCor2 processe, the process can be started immediately. Once the process
finishes, it frees its GPU(s), which then become available for new processes. This function
is enabled with -Gpu and -UseGpus where -Gpu lists all the GPU IDs installed on your
system and -UseGpus specifies number of free GPUs to be used in the process.

At UCSF we are able to perform real-time motion correction when the data collection runs
as fast as 4 K3 movies per minute with each containing 200 frames. This is achieved by
running 8 MotionCor2 jobs in Scipion on a Linux workstation equipped with 756 GB CPU
memory and 8 nVidia 2080ti cards. Each process is started with

-Gpu 0 1 2 3 4 5 6 7 \
-UseGpus 1

Please be reminded that the architecture PCIe Bus plays a significant role in the overall
performance of running multiple jobs simultaneously since MotionCor2 involves intensive
data exchange between CPU and GPU memory. In general, more PCIe bus lanes are
strongly preferred. If interested, please feel free to contact the author for more information.

23. Miscellaneous

Starting the program without specifying any argument will display all the command line
parameters with brief discriptions.

14

Release Report

11-30-2016 version:
1. Bug fix in generation of log file.
2. Bug fix in saving MRC file. 1) Add min, max, mean in the main header. 2) Revise
the main header in accordance to the format defined in JSB 2015, 192 (2) 146-150.
3. Bug fix in the determination of whether the input MRC file is a tomographic tilt
series or a single-particle movie stack.

10-19-2016 version:
1. Bug fix in generation of log file.
2. Bug fix in saving MRC file. 1) Add min, max, mean in the main header. 2) Revise
the main header in accordance to the format defined in JSB 2015, 192 (2) 146-150.
3. Bug fix in the determination of whether the input MRC file is a tomographic tilt
series or a single-particle movie stack.

01-03-2017 version:
1. Add function to correct anisotropic magnification.
2. Add –FmRef that allows movie stacks to be aligned to a user-specified frame.

Version 1.0.0 − Release on 07-05-2017
Per user requests, we start using version number instead of date to track the release of
MotionCor2. The first version number indicates major changes have been made. The
second number denotes minor changes or features added. The last number typically refers
to bug fixing.

1. Allow users to specify camera defects in an input file.
2. Support batch processing of TIFF stacks.
3. Support archiving MRC stacks.
4. Revised how users should enter the parameters of anisotropic magnification.
5. Provide “-PhaseOnly” option for cross correlation used in alignment.

Version 1.0.1 − Release on 09-06-2017
This version significantly improves computational efficiency by buffering as many
frames in GPU memory as possible. This strategy significantly reduces the overhead of
copying frames from CPU to GPU. As a result, as much as 50% of the computational
time can be saved.

Importantly, each GPU cannot be shared by two MotionCor2 processes at the same time.
If a GPU is used in one MotionCor2 process, the second MotionCor2 process should not
use this GPU. Otherwise, both processes will yield incorrect results and CUDA errors
due to GPU memory limitation.

The new functions are:

15

1. Dark-reference correction.
2. Overlapped patches for local motion correction.

Version 1.1.0 − Release on 09-06-2017
This version further improves the speed of motion correction and more robust compared
to previous releases.

The new functions are:
1. -GpuMemUsage allows users to specify how much GPU memory is used to buffer
 movie frames.
2. -InFmMotion allows to take into account motion-induced blurring on each frame.
3. -Bft takes an optional second parameter that is used for measuring local motion.

16

Frequently Asked Questions

1. The input movie stack is already gain corrected. MotionCor2 reports on the terminal
“Apply gain to the stack”. Will the gain reference be applied again in MotionCor2?
No, as long as the gain reference is not provided from the command line as a MRC file or
not contained in the extended header of the MRC file of the input movie stack.

2. Are the bad and hot pixels detected different from camera_defects_pixels?
Yes, they are different since MotionCor2 detects them dynamically.

3. I got the following error messages, what went wrong?
“Error: CCufft2D failed, unable to create CUFFT_R2C plan.”
“Error: CCufft2D::Forward: an illegal memory access was encountered.”
“Error: CCufft2D::Forward: an illegal memory access was encountered.”
These error messages are most likely caused by incompatiblity between CUDA driver and
CUDA toolkit. Ask system administrator to check if both the driver and the toolkit are of
the same version.

4. I noticed that the output and log file always list the frame shifts relative the first
frame, no ma matter what value “-FmRef” is set to.
The output and log files list the shifts relative to the first frame. However the correction is
relative to the central frame by default. “-FmRef” is a switch that allows to choose the
reference either the central frame by giving it a non-zero value or the first frame by setting
it zero.

5. Does MotionCor2 work on Falcon images?
Yes.

